Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT

Thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2019 – 2020.

Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường THPT chuyên Lê Quý Đôn – BR VT gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 180 phút.

Trích dẫn đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT:
+ Cho tam giác ABC đều, tâm H và có độ dài cạnh là a. Đường thẳng d vuông góc với mặt phẳng (ABC) tại điểm A. Điểm M thay đổi trên đường thẳng d, AM = x (x > 0). Gọi K là trực tâm tam giác MBC. Chứng minh đường thẳng HK vuông góc với mặt phẳng (MBC) và tìm x để khoảng cách từ điểm K đến mặt phẳng (ABC) đạt giá trị lớn nhất.



+ Xét hình chóp S.ABC thay đổi sao cho các cạnh SA, SB, SC đôi một vuông góc với nhau. Gọi M, N, P là trung điểm các cạnh BC, CA, AB. Kí hiệu α, β, γ lần lượt là góc tạo bởi mặt phẳng (ABC) với các mặt phẳng (SMN), (SNP), (SPM). Tìm giá trị lớn nhất của biểu thức T = sinα + sinβ + sinγ.
+ Có một số kiện hàng đã được đóng gói với tổng khối lượng là 3 tấn. Mỗi kiện hàng có khối lượng không quá 500 kilôgam. Chứng minh rằng người ta có thể sử dụng 4 chiếc xe tải, mỗi xe chở không quá 1 tấn để chở tất cả các kiện hàng nói trên.
Tải tài liệu

Be the first to comment

Leave a Reply